Rob Alessie and Tabea Bucher-Koenen

Boot Camp 2025 June 24,2025

Fearless Woman: Financial Literacy and Stock Market Participation

Tabea Bucher-Koenen (ZEW, U of Mannheim) Rob Alessie (U of Groningen) Annamaria Lusardi (The George Washington University and GFLEC) Maarten van Rooij (DNB)

Introduction

This paper is part of a long term research agenda

• Measuring financial literacy

The Big Three

- Assessing the gender gap in financial literacy
 - A consistent finding around the world
- Does the gender gap matter? Examining stock market participation
 - Important for saving and growing wealth
 - Investing is what people identify with "finance"
 - Stock market participation is an important outcome variable in research on financial literacy

The "Big 3" financial literacy questions

- 1) Interest: Suppose you had 100€ in a savings account and the interest rate was 2% per year. After 5 years, how much do you think you would have in the account if you left the money to grow? More than 102€ / Exactly 102€ / Less than €102 / Do not know/ Refuse to answer
- 2) Inflation: Imagine that the interest rate on your savings account was 1% per year and inflation was 2% per year. After 1 year, how much would you be able to buy with the money in this account? More than today / Exactly the same / Less than today / <u>Do not</u> <u>know / Refuse to answer</u>
- **3) Risk:** Please tell me whether this statement is true or false. "Buying a single company's stock usually provides a safer return than a stock mutual fund." True / False / <u>Do not know / Refuse to answer</u>

Bucher-Koenen, Lusardi, Alessie, van Rooij (2017) "How financially literate are women? An overview and new insights", *Journal of Consumer Affairs*

Similar findings across countries

Financial knowledge by gender (% answering 3 Qs correctly)

At least one "don't know" answer, by gender

Very robust findings of large gender differences in financial knowledge
Women are much more likely to say "I do not know"

Bucher-Koenen, Lusardi, Alessie, van Rooij (2017) "How financially literate are women? An overview and new insights", *Journal of Consumer Affairs*

Similar findings across countries – S&P survey

- Similar results for many countries
- Gender gap is persistent over different levels of economic development

Striking patterns

- Results persist for **broader sets** of financial literacy questions (Van Rooij et al. 2011a, Lusardi and Mitchell 2009, Lusardi et al. 2009, Bucher-Koenen 2011)
- Persistent for different subgroups of the population (young and old)
- Persistent for different domains (pension literacy, economic literacy, debt literacy)

Research Questions and Contribution

- What lies behind the gender gap in financial literacy?
- Why do women answer with "do not know" more frequently?
- Is it due to a lack of knowledge or lack of confidence?

Does how we measure financial literacy affect our understanding and predictions with regard to financial decisions and economic outcomes?

Evidence from a Survey Experiment

The Survey Experiment

Sample and structure of the experiment

- DNB Household Panel (DHS)
- Representative online survey of Dutch households
- We include household heads and their partners, age 18+.

The Survey Experiment

Additional details on the sample

- Sample:
 - Completed both questionnaire modules, N=1532,
 - 861 (56.2%) are men and 671 (43.8%) are women.
- Attrition: No significant effects of gender or financial literacy on dropping out after the first module.
- Learning: Answers to financial literacy questions in 2nd module for refreshers (N=445) do not differ significantly from participants in both modules.

Comparison of answers in 1st module (May) and 2nd module (July)

Interest

Significant improvement in the probability to give a correct answer for men and women (test against random answering). Gender gap decreases from 7.5 to 3.5 pp.

13

Comparison of answers in 1st module (May) and 2nd module (July)

Inflation

Significant improvement in the probability to give a correct answer for men and women (test against random answering). Gender gap decreases from 9.2 to 6.2 pp.

14

Comparison of answers in 1st module (May) and 2nd module (July)

Risk

Significant improvement in the probability to give a correct answer for men and women (test against random answering). Gender gap decreases from 27.5 to 9.4 pp. 15

Consistent and inconsistent answering behavior across modules

	Men		Women			
Мау	incorrect	correct	do not know	incorrect	correct	do not know
July						
A. Interest:						
incorrect	23.26	3.54	29.63	28.3	4.95	30.77
correct	76.74	96.46	70.37	71.7	95.05	69.23
Total	100	100	100	100	100	100
B. Inflation:						
incorrect	41.3	2.72	33.33	30.77	7.02	38.46
correct	58.7	97.28	66.67	69.23	92.98	61.54
Total	100	100	100	100	100	100
C. Risk Diversification	:					
incorrect	38.46	10.32	27.38	47.69	12.55	32.27
correct	61.54	89.68	72.62	52.31	87.45	67.73
Total	100	100	100	100	100	100

Confidence measure conditional on answers in May

Confidence cond. Correct

Confidence cond. Do not know

Women report substantially lower confidence levels in module 2 – both when knowing the right answer and when choosing the DKoption in module 1.

Women Men

Issues with directly observed measures

Rationale for developing an econometric latent class model

- 1. The May measure (module 1) corresponds to Big 3 approach
 - includes "do not know"-option.
 - reflects both knowledge and *confidence*.
- 2. On the other hand, the **July measure** (module 2)
 - forces individuals to answer, and therefore is not confounded by confidence.
 - contains measurement error (due to guessing) and is upward biased as a result.
- 3. On average, women display lower confidence in their answers compared to men irrespective of their chosen answers.

Econometric model takes these observations into account, deriving an empirical measure of 'true financial knowledge'

Measuring and decomposing financial literacy: A latent class model

Econometric Model - Definitions

The central latent variable and observable information

We define the following **latent variable for 'true knowledge'** (not observed) for each financial literacy question:

- $\tilde{y}_{ik} = 1$ if respondent *i* truly 'knows' the correct answer to literacy question k (k=1,2,3),
- $\tilde{y}_{ik} = 0$ otherwise.

Observed proxies for this variable:

 y_{ik}^m answer to literacy question k in May; 0 (incorrect), 1 (correct), 2 (do not know);

 y_{ik}^{j} answer to question k in July; 0 (incorrect) and 1 (correct);

 $conf_{ik}^{j}$ answer to the confidence question on a scale from 1 to 7.

Econometric Model - Intuition

Predicted probability of 'true financial literacy'

Our **goal**: **Predict** the probability that a respondent **truly knows** the answer to literacy question *k* based on background characteristics x_i and on the variables y_{ik}^m , y_{ik}^j and $conf_{ik}^j$: $P(\tilde{y}_{ik} = 1 | x_i, y_{ik}^m = l_k, y_{ik}^j = m_k, conf_{ik}^j = z_k), k = 1,2,3$

Summary measure of financial literacy:

$$finlit_{i} = \sum_{k=1}^{3} P(\tilde{y}_{ik} = 1 | x_{i}, y_{ik}^{m} = l_{k}, y_{ik}^{j} = m_{k}, conf_{ik}^{j} = z_{k})$$

Econometric Model – Approach

The latent class model

Let $g_{ik} = 3 \cdot y_{ik}^{j} + y_{ik}^{m}$, so that it can take on values 0,...,5.

The log-likelihood of our latent class model is based on the conditional multinomial density of g_{ik} :

$$P(g_{ik} = g | x_i, conf_{ik}^j = z_{ik})$$

This conditional probability can be written as a weighted average of two multinomial probabilities:

$$P(g_{ik} = g | x_i, conf_{ik}^j = z_{ik})$$

= $P(g_{ik} = g | \tilde{y}_{ik} = 1, x_i, conf_{ik}^j = z_{ik})P(\tilde{y}_{ik} = 1 | x_i, conf_{ik}^j = z_{ik})$
+ $P(g_{ik} = g | \tilde{y}_{ik} = 0, x_i, conf_{ik}^j = z_{ik})P(\tilde{y}_{ik} = 0 | x_i, conf_{ik}^j = z_{ik})$
= $\alpha_g^1(x, z_k)P(\tilde{y}_i = 1 | x_i, conf_{ik}^j = z_{ik})$
+ $\alpha_g^0(x, z_k)P(\tilde{y}_i = 0 | x_i, conf_{ik}^j = z_{ik})$

• We assume that

$$\begin{aligned} & 1.P\big(\tilde{y}_{ik} = 1 \big| x_i, conf_{ik}^{\ j} = z_k \big) = P(\tilde{y}_{ik} = 1 | x_i) = \Phi(x_i'\beta_k) \text{ (Probit)} \\ & 2.P\big(g_{ik} = g \big| \tilde{y}_{ik} = 1, x_i, conf_{ik}^{\ j} = z_k \big) = \alpha_g \ (z_k; \gamma_k^1) \text{: Mult. Logit, g=4 ref. group} \\ & (y_{ik}^m = y_{ik}^j = 1 \text{ correct answers in May and July}) \\ & 3.P\big(g_{ik} = g \big| \tilde{y}_{ik} = 0, x_i, conf_{ik}^{\ j} = z_k \big) = \alpha_g \ (z_k; \gamma_k^0) \text{ (Mult Logit, g=0 ref. group)} \end{aligned}$$

Model

• Then we can write

$$P(g_{ik} = g | x_i, conf_{ik}^j = z_k) = \alpha_g (z_k; \gamma_k^1) \Phi(x_i'\beta_k) + \alpha_g (z_k; \gamma_k^0) \Phi(-x_i'\beta_k)$$

Identification problem

the parameter vector $(\gamma_k^{1'}, \gamma_k^{0'}, \beta_k')'$ is observationally equivalent with $(\gamma_k^{0'}, \gamma_k^{1'}, -\beta_k')'$ in the sense that they both result in the same probability distribution of observable data.

Model

Latent class model (V): Identifying assumptions

1. $\alpha_0^1(z_k) = P(g_{ik} = 0 | \tilde{y}_{ik} = 1, conf_{ik}^j = z_k) = P(y_i^m = 0, y_i^j = 0 | \tilde{y}_{ik} = 1, conf_{ik}^j = z_k) = 0, z_k = 1, ..., 7$ (if a resp truly knows the answer to FL question, he/she will not pick a wrong answer twice.)

2. $\alpha_1^1(z_k) = P(g_{ik} = 1 | \tilde{y}_{ik} = 1, conf_{ik}^j = z_k) = P(y_i^m = 1, y_i^j = 0 | \tilde{y}_{ik} = 1, conf_{ik}^j = z_k) = 0, z_k = 1, ..., 7$ 3. $\alpha_3^1(z_k) = P(g_{ik} = 3 | \tilde{y}_{ik} = 1, conf_{ik}^j = z_k) = P(y_i^m = 0, y_i^j = 1 | \tilde{y}_{ik} = 1, conf_{ik}^j = z_k) = 0, z_k = 1, ..., 7$ (conditional on true knowledge, resp will not answer correctly in May and incorrectly in July or vice versa)

4. $\alpha_2^1(z) = P(g_{ik} = 2 | \tilde{y}_{ik} = 1, conf_{ik}^j = z_k) = P(y_i^m = 2, y_i^j = 0 | \tilde{y}_{ik} = 1, conf_{ik}^j = z_k) = 0, z_k = 1, ..., 7$ (Resp. with true knowledge who pick a "dk" response in May, would never answer incorrectly in July.)

5. $\alpha_4^0(z) = P(g_{ik} = 4 | \tilde{y}_{ik} = 0, conf_{ik}^j = z_k) = P(y_i^m = 1, y_i^j = 1 | \tilde{y}_{ik} = 0, conf_{ik}^j = z_k) = 0, z_k = 6,7$ (Given that resp. doesn't have true knowledge ($\tilde{y}_{ik} = 0$) and given high confidence $(conf_{ik}^j = 6,7)$, the probability of giving the correct answer twice is 0.)

Econometric Model – Final Outcome

Empirical estimate of 'true' financial literacy

Once we estimate the parameters, for each financial literacy question, we can calculate:

$$P\big(\tilde{y}_{ik} = 1 \middle| g_{ik} = g, conf_{ik}^{j} = z_{ik}, x_i\big) = \frac{\alpha_g^1(z_{ik}; \gamma^1) \Phi(x'_i\beta)}{\alpha_g^1(z_{ik}; \gamma^1) \Phi(x'_i\beta) + \alpha_g^0(z_{ik}; \gamma^0) \Phi(-x'_i\beta)}$$

This can be interpreted as *the posterior probability of having true knowledge* (our latent variable) which results after updating using the information from the two surveys (Bayes' rule).

And we can compute our measure of financial literacy:

$$finlit_{i} = \sum_{k=1}^{3} P(\tilde{y}_{ik} = 1 | g_{ik} = g, conf_{ik}^{j} = z_{k}, x_{i})$$

- Notice that the posterior distribution of \tilde{y}_{ik} is degenerate if the following conditions are met:
 - $P(\tilde{y}_{ik} = 1 | g_{ik} = g, x_i, conf_{ik}^j) = 1 \text{ if } \alpha_g^0(conf_{ik}^j; \gamma_k^0) = 0$

•
$$P(\tilde{y}_{ik} = 1 | g_{ik} = g, x_i, conf_{ik}^j) = 0 \text{ if } \alpha_g^1(conf_{ik}^j; \gamma_k^1) = 0$$

- So, $\tilde{y}_{ik} = 0$ with certainty if
 - respondents answer inconsistently over time (once correctly, once incorrectly),
 - answer incorrectly two times, or
 - pick the "do not know" answer in the May module and an incorrect answer in the July module.
- $\tilde{y}_{ik} = 1$ with certainty if he/she answers the financial literacy questions correctly two times (with a high conf level in July confidence level)

Latent class model VIII

• For respondents who provide a "DK" answer in May and a correct one in July, the LCM is used to predict the probability of true knowledge,

$$0 < P(\tilde{y}_{ik} = 1 | g_{ik} = 5, x_i, conf_{ik}^j) < 1$$

Results

Overview of Results

Financial literacy and gender gap using different measures

	Total	Gender Difference
	IOLAI	(Men-Women)
Panel A: May measure		
Interest	88.6	7.5
Inflation	85.8	9.2
Risk	49.9	27.5
Financial literacy measure	2.24	0.45
Panel B: July measure		
Interest	93.2	3.5
Inflation	91	6.2
Risk	78.3	9.4
Financial literacy measure	2.62	0.19
Panel C: true financial literacy		
Interest	87.6	5.7
Inflation	86.3	8.8
Risk	63.8	13.8
Financial literacy measure	2.38	0.28 31

Multivariate Regression Results

The gender gap in financial literacy (OLS regression)

	May	July	True literacy	
Panel A. Only gender				
Female	-0.442***	-0.190***	-0.284***	
	(0.0386)	(0.0291)	(0.0352)	
Adjusted R ²	0.067	0.024	0.035	
Panel B. With controls for age, income, education, marital status				
Female	-0.361***	-0.147***	-0.225***	
	(0.0394)	(0.0301)	(0.0362)	
Adjusted R ²	0.156	0.094	0.143	

Economic Consequences (OLS)

Effects of different fl-measures on stock market participation

	No controls	May	July	True literacy
Financial Literacy		0.090***	0.055***	0.067***
		(0.0105)	(0.0097)	(0.0101)
Gender	-0.136***	-0.046***	-0.072***	-0.065***
	(0.0207)	(0.0212)	(0.0213)	(0.0213)
Controls+	no	yes	yes	yes
Ν	1532	1532	1532	1532
Adjusted R ²	0.022	0.137	0.117	0.122

Controls+: Age, income, education, marital status

Economic Consequences (IV)

Taking potential reverse causality/omitted variables into account

- Instrument: Economics in high school
- **3 groups**: None, some, DK

	May	July	True literacy
Financial Literacy	0.192***	0.222***	0.204***
	(0.0671)	(0.0842)	(0.0751)
Gender	-0.003	-0.031	-0.024
	(0.0369)	(0.0308)	(0.0325)
First stage F- stats	14.19	9.19	11.26

Further controls: Age, income, education, marital status

Financial Literacy and Underconfindence

Quantifying underconfidence and its economic effects

- Underconfidence can be defined directly from our model
- Specifically, we calculate the prob of true knowledge conditional on a DK-answer in the first wave

und_conf =
$$\sum_{k=1}^{3} P(\tilde{y}_{ik} = 1 | y_{ik}^{m} = 2, \text{conf}_{ik} = z, x_i) \cdot I(y_{ik}^{m} = 2)$$

	OLS I	OLS II	GMM I	GMM II
Financial Literacy	0.067***	0.070***	0.183**	0.180**
true literacy	(0.0101)	(0.0100)	(0.082)	(0.0705)
Underconfidence		-0.062***	-0.056	-0.066***
		(0.0094)	(0.113)	(0.0099)
Gender	-0.065***	-0.047**	-0.015	-0.013
	(0.0213)	(0.0211)	(0.0368)	(0.0318)
R ²	0.132	0.150	0.094	0.098

Using DKs as Proxy

Effects of different fl-measures on stock market participation

	True Finlit	True+ Underconf	May Finlit	May Finlit + # of DKs
Financial Literacy	0.0672***	0.0707***	0.0901***	0.0666***
	(0.0101)	(0.0100)	(0.0105)	(0.0187)
Gender	-0.0646***	-0.044**	-0.0461**	-0.0443**
	(0.0213)	(0.0212)	(0.0212)	(0.0213)
Controls+	yes	yes	yes	yes
Ν	1532	1532	1532	1532
Adjusted R ²	0.122	0.140	0.137	0.138

Controls+: Age, income, education, marital status

Conclusion

Main insights

Financial knowledge and confidence

- We differentiate two channels for the observed gender gap in financial literacy: a gap in *knowledge (2/3)* and a gap in *confidence (1/3)*
- We are able to estimate whether a respondent *truly knows* the correct answer and therefore get a better measure that matters for behavior

Financial literacy and confidence matter

• They both explain stock market participation

Conclusion

Policy implications

- Financial literacy matters
- Need to improve the levels of financial literacy, in particular among women
- More research (!) necessary to understand how to also instill confidence, in particular among women.
- Fearless Girl symbolizes this suggestion

Financially, women on average know less than men – but they know more than they think they know.

